Принципы работы оборудования
Для изменения частоты вращения от ведущего звена к ведомому применяют ременные, зубчатые и червячные передачи. Отношение частоты вращения ведомого nвд к частоте вращения ведущего nвщ звена называется передаточным отношением.
Цепная передача, как и ременная, применяется для передачи вращения между валами, удаленными друг от друга. Эти передачи используются в металлорежущих станках и транспортерах (рисунок 17).
Рисунок 17 – Общий вид ременной и цепной передачи: а) ременная; б) цепная
Зубчатая передача – механизм, который с помощью зубчатого зацепления передает и преобразует движение (без проскальзывания) с изменением угловых скоростей и моментов (рисунок 18).
Рисунок 18 – Зубчатая передача
Червячная передача состоит из червяка и червячного колеса (рисунок 19). Передаточные отношения червячной передачи рассчитываются по формуле:
где Zч– число заходов червяка; Zч.к– число зубьев червячного колеса.
Рисунок 19 – Червячная передача
Преимуществами червячной передачи являются компактность, бесшумность, плавность хода, возможность большого редуцирования, к недостаткам передач относится малый КПД (коэффициент полезного действия).
Передачи поступательного движения.
Эти передачи служат для преобразования вращательного движения в прямолинейное поступательное движение рабочего органа. В станках применяют реечные передачи, винтовые пары (скольжения и качения), кулисные, кулачковые механизмы и др.
Реечная передача служит для преобразования вращательного движения реечного колеса в поступательное перемещение рейки и наоборот. Реечная передача может быть выполнена с прямозубым и косозубым зацеплением колеса с рейкой.
Реечные передачи используют в металлорежущих станках, например, в токарных, для осуществления движения продольной подачи суппорта с резцом относительно обрабатываемой заготовки (рисунок 20).
Рисунок 20 – Реечная передача в станке
Винтовая передача применяется в тех случаях, когда нужно получить движение с малыми скоростями. Вращение сообщается винту, гайка и связанные с нею стол или салазки перемещаются прямолинейно- поступательно (рисунок 21).
Рисунок 21 – Винтовая передача
Кривошипно-кулисные механизмы (сокращённо – кулисные механизмы) с возвращающейся кулисой применяются в долбёжных станках, а с касающейся кулисой – в поперечно-строгальных станках. Кулисные механизмы обеспечивают большую скорость при обратном холостом ходе и плавность движения.
Перемещения исполнительных механизмов оборудования показываются в кинематических схемах. Рассмотрим кинематическую схему токарного станка 1К62, которая показана на рисунке 22.
Рисунок 22 – Кинематическая схема станка
Кинематическая цепь привода главного движения.
Эта цепь обеспечивает передачу вращения от электродвигателя M1 шпинделю VI с возможностью включения разных частот его вращения. Шпиндель станка может иметь правое и левое направление вращения. При правом направлении вращения шпинделя муфта МФ1 будет включена влево.
Передняя бабка условно разделена на несколько частей (см. кинематическую схему, рисунок 22):
- Фрикционный (входной) вал – фрикционный вал состоит из: двойной фрикционной муфты МФ1 с неподвижным двойным блоком (z=51, z=56), шестерни (z=50) и неподвижного блока реверса (z=24, z=36);
- Коробка скоростей – вал II с подвижным двойным блоком (Б1), вал III с подвижным тройным блоком (Б2);
- Перебор – вал IV с подвижными двойными блоками (Б3, Б4, Б5);
- Узел тормоза – ленточный тормоз на валу III;
- Шпиндель – с подвижным двойным блоком (Б5) включающем перебор и шестерней z=60 для передачи вращения на привод подач;
- Узел привода подач:
- Звено увеличения шага резьбы – блок Б6, обеспечивает увеличение выходной скорости по отношению к скорости шпинделя;
- Механизм реверса 2-х скоростной – блок Б7 служит для изменения направления движения суппорта.
Привод подач включает в себя следующие цепи и узлы (рисунок 23):
- Звено увеличения шага резьбы – двойной блок Б6 в шпиндельной бабке, обеспечивает увеличение выходной частоты вращения по отношению к частоте вращения шпинделя в соотношении: 1:2, 1:8, 1:32;
- Механизм реверса 2-х скоростной – тройной блок Б7 в шпиндельной бабке, служит для изменение направления движения суппорта при одном и том же направлении вращении шпинделя. Осуществляется подкючением промежуточной шестерни – трензеля;
- Гитара сменных колес – включает сменные шестерни K, L, M, N. Служит для сравнительно редкой перенастройки чисел оборотов;
- Коробка подач – коробка подач получает движение от шпиндельной бабки через гитару и задаёт различные скорости вращения ходового вала и ходового винта;
- Механизм подач фартука – преобразует вращение ходового вала или ходового винта в поступательное движение суппорта продольное или поперечное.
Рисунок 23 – Привод подач станка
Продольное перемещение суппорта осуществляется следующим образом (рисунок 24):
- от шпинделя через передачу 60/60, далее через реверс с колесами 42/42 или 28/56 либо 35/28×28/35 и через гитару сменных колес 42/95×95/50 вращается вал IX коробки подач;
- подключив муфту, колесо МФ2 начинает вращать конус шестерен 26, 28, 32, 36, 40, 44, 48 и от него накидное колесо 36;
- далее через передачу и включенную муфту МФ3 вращается двойной блок z=18 – z=28, осуществляющий отношения 18/45 и 28/35, затем через двойной блок 15/48 и 35/28 и через передачу 28/56 вращается ходовой вал, по которому вместе с фартуком перемещается колесо z=27;
- далее движение передается через передаточные отношения колес фартука 27/20×20/28×4/20×40/37×14/66 на реечное колесо z=10 (модуль зацепления m=3 мм). Колесо 10, находясь в зацеплении с рейкой, прикрепленной к станине, катится по ней и перемещает фартук с суппортом;
- включением муфт МФ8 или МФ9 колесо z=14 вращается вправо или влево, меняя направление движения суппорта.
Рисунок 24 – Перемещения суппорта: 1 – рукоятка перемещения поперечных салазок; 2 – каретка продольного перемещения; 3 – винт механизма продольного перемещения; 4 – каретка поперечного перемещения; 5 – фиксирующий винт верхней каретки;
Общее уравнение кинематической цепи продольных подач определяется исходя из расчетного периода одного оборота шпинделя.
До червячной передачи фартука кинематическая цепь не отличается от предыдущей цепи. Далее через колеса 40/37 или 40/45×45/37 включением муфт МФ10 или МФ11 и через передачи 40/61×61/20 вращается винт поперечной подачи суппорта. Шаг резьбы винта 5 мм, резьба левая. Уравнение кинематической цепи аналогичное, как и для продольных подач.
Величины подач в 2 раза меньше соответствующих величин продольных и составляют от 0,035 до 2,08 мм/об.
Ручное продольное перемещение суппорта. Маховиком на валу XIX через передачу вращается реечное колесо z=10. За один оборот маховика суппорт переместится на заданную величину.
Шпиндель установлен на двух опорах качения (рисунок 25). Передняя опора представляет собой регулируемый двухрядный роликовый подшипник с внутренним коническим кольцом. Подшипник регулируют затягиванием гайки (стопора), которая нажимает на внутреннее кольцо подшипника.
Кольцо при этом надвигается на коническую шейку шпинделя и разжимается; таким образом уменьшается зазор между кольцами и роликами, образовавшийся в результате износа. Задняя опора шпинделя состоит из двух радиально-упорных подшипников, которые регулируют только при текущем осмотре станка.
Рисунок 25 – Крепление шпинделя
В конструкции токарного станка 1К62 для установки шпинделя предусмотрены специальные подшипники, благодаря чему обеспечиваются требуемая жесткость и высокая точность обработки заготовок. По ГОСТу 8 токарный станок 1К62 относится к классу точности П.
Передний конец шпинделя выполнен по ГОСТ 12593 (Концы шпинделей фланцевые под поворотную шайбу и фланцы зажимных устройств) (DIN 55027, ИСО 702-3) под поворотную шайбу, с центрирующим коротким конусом 1:4 (7°7′30″).
Конструкция задней бабки токарного станка позволяет осуществлять поперечное ее смещение, благодаря чему на станке может осуществляться обработка пологих конусов (рисунок 26). Есть возможность соединения задней бабки с нижней частью суппорта с помощью специального замка, что иногда требуется при сверлении задней балкой и использовании механического перемещения балки от суппорта.
Рисунок 26 – Обработка конусов с помощью смещения задней бабки Продольное перемещение каретки станка 1К62Б может быть
ограничено специальным упором, устанавливаемым на передней полке станины. Таким образом, при установленном упоре, скорость движения суппорта не может превышать 250 мм/мин.
Классификация агрегатов по группам
Основное деление массива металлорежущих станков происходит по технологическому способу обработки, способу перемещения механизмов и виду применяемого инструмента.
https://www.youtube.com/watch?v=SNAKlrlLhR8
Различают 10 групп станков:
- Первая группа – токарные агрегаты. Они составляют порядка 30% станочного парка. Используются для обработки точением деталей вращения. Движением резания для группы является вращение заготовки.
- Вторая – сверлильные и расточные агрегаты. Их доля составляет 20%, используются для обработки отверстий различными способами. Вращение инструмента и его подача при неподвижной детали являются главными движениями резания. У расточных аппаратов добавляется ход стола с деталью.
- Третья – шлифовальные, полировальные, заточные и доводочные аппараты. Составляют 20% от общего числа подобного оборудования. Работают абразивным инструментом. В полировальных и доводочных агрегатах применяется абразивная паста и порошок, шлифовальные ленты и бруски.
- Четвертая – аппараты для физико-химической обработки и комбинированные. К этой группе относятся, например, агрегат для электроэрозионной обработки.
- Пятая группа – зубообрабатывающие и резьбообрабатывающие аппараты. Составляют 6% всего парка. Используются для нарезания разных видов зубчатых колес и резьбы. Они выполняют черновые и финишные операции.
- Шестая – фрезерные аппараты. Насчитывают 15% от общего числа оборудования. Рабочим инструментом являются многолезвийные фрезы разных конструкций.
- Седьмая группа – строгальные, протяжные, долбежные станки. На их долю приходится 4% станков. Имеют прямолинейное рабочее движение стола. У долбежных станков главное движение – возвратно-поступательное перемещение резца. Протяжные станки используются для обработки отверстий и пазов с помощью многолезвийного инструмента – протяжки.
- Восьмая – разрезные станки. Служат для разрезания заготовок типа круга, уголков, прутков.
- Девятая группа – разные станки. В эту группу входят станки для балансировки, правки и других операций.
- Десятая – резервная. Многоцелевые станки вроде оборудования с ЧПУ и обрабатывающих центров позволяют реализовывать ряд способов механообработки. В соответствии с видом выполняемой операции включаются в одну из станочных групп.
Станки по металлу: группы и характеристики станков
Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров (с требуемыми точностью и качеством обработанной поверхности). На станках обрабатывают заготовки не только из металла, но и из других материалов, поэтому термин «металлорежущий станок» является условным.
В каждую из девяти групп, внесены станки по определенному характерному признаку : 1 –
токарные станки
, 2 –
сверлильные и расточные станки
, 3 –
шлифовальные и доводочные станки
, 4 –
станки для электро-физико-химической обработки
, 5 –
Зубо- и резьбообрабатывающие станки
, 6 –
фрезерные станки
, 7 –
строгальные, долбежные и протяжные станки
, 8 –
разрезные станки
, 9 –
разные станки.
Каждую группу подразделяют на девять типов, характеризующих назначение станков, их компоновку, степень автоматизации или вид применяемого инструмента.
Моделям станков, выпускаемых серийно, присваивают цифровое или цифробуквенное обозначение.
По степени универсальности станки подразделяют на универсальные, специализированные и специальные.
Универсальные станки предназначены для обработки деталей широкой номенклатуры в индивидуальном и мелкосерийном производствах. Для этих станков характерен широкий диапазон регулирования скоростей и подач. К универсальным станкам относятся токарные, токарно-винторезные, токарно-револьверные, сверлильные, фрезерные, строгальные и др.
Специализированные станки используют для обработки деталей одного наименования, но разных размеров. К ним относятся станки для обработки труб, муфт, коленчатых валов, а также зубо- и резьбообрабатывающие, токарно-затыловочные и др. Для специализированных станков характерна быстрая переналадка сменных устройств и приспособлений; они применятются в серийном и крупносерийном производствах.
Специальные станки служат для обработки детали одного наименования и размера; их применяют в крупносерийном и массовом производствах.
В обозначение специализированных и специальных станков перед номером модели вводят индекс завода-изготовителя из одной или двух букв.
В зависимости от массы станки подразделяют на легкие — массой до 1 т, средние — до 10-ти тяжелые — свыше 10 т. В свою очередь тяжелые станки делят на крупные (до 30 т), собственно тяжелые (до 100 т) и уникальные (свыше 100 т).
По степени автоматизации различают станки с ручным управлением, полуавтоматы и автоматы. В станках с ручным управлением пуск и останов станка, переключение скоростей и подач, подвод и отвод инструментов, загрузку станка заготовками и разгрузку обработанных деталей и другие вспомогательные операции выполняет рабочий.
Полуавтомат — станок, работающий по автоматическому циклу, для повторения которого требуется вмешательство рабочего. Так, рабочий вручную устанавливает на станок заготовку и снимает обработанную деталь, после чего включает станок для повторения цикла. (Под циклом понимают промежуток времени от начала до конца периодически повторяющейся операции независимо от числа одновременно обрабатываемых заготовок.)
Автомат — все рабочие и вспомогательные движения, необходимые для выполнения цикла технологической операции, осуществляются без участия рабочего, который лишь наблюдает за тем, как функционирует станок, контролирует качество обработки и при необходимости подналаживает станок, т.е. регулирует его для восстановления достигнутых при первоначальной наладке точности взаимного расположения инструмента и заготовки, а также качества обрабатываемой детали.
Порасположению шпинделя станки делят на горизонтальные, вертикальные и наклонные.
По степени концентрации операций станки подразделяют на одно- и многопозиционные. Размерные ряды станков
Для большинства станков стандартами установлены основные (главные) параметры, характеризующие размеры обрабатываемых деталей или размеры самого станка. Совокупность численных значений этих параметров (от наименьшего до наибольшего) образует размерный ряд станков одного типа, т.е. подобных по конструкции, кинематической схеме и внешнему виду.
Конструкция станков размерного ряда состоит в основном из унифицированных узлов, одинаковых или подобных, что облегчает конструирование, изготовление и эксплуатацию станков, а также способствует удешевлению их производства.
Размерные ряды станков строят по принципу геометрической прогрессии, в которой главный параметр станка является членом ряда.При разработке размерных рядов учитывают, что необоснованное расширение номенклатуры выпускаемых станков, сходных по своему назначению, приводит к уменьшению серийности выпуска, возрастанию себестоимости изготовления станков и повышению расходов на их эксплуатацию.
Управление станками
Под управлением станком понимают совокупность воздействий на его механизмы, обеспечивающих выполнение технологического цикла обработки, а под системой управления — устройство или совокупность устройств, реализующих эти воздействия.
Цикл работы станка — это совокупность всех движений, необходимых для обработки заготовок и выполняемых в определенной последовательности.Циклы, осуществляемые при работе станочного оборудования, делят на две группы.
-Первую группу образуют циклы, которые остаются неизменными и повторяются многократно в процессе эксплуатации оборудования, например циклы работы автоматических линий и агрегатных станков.
-Ко второй группе относятся циклы, совершаемые однократно в определенные моменты. Эти циклы инициируются специальной командой. Примерами таких циклов являются циклы движений вспомогательных механизмов в станках: поиск и смена инструмента, зажим и освобождение подвижных узлов, загрузка и зажим заготовок, выгрузка обработанных деталей и т.д.
Управление станком может быть ручным или автоматическим. Примером системы ручного управления является многорукояточное устройство, в котором для перемещения каждого блока зубчатых колес предусмотрена рукоятка. Ручное управление может быть селективным (избирательным), преселективным (с предварительным набором скоростей) и дистанционным (кнопочным).
Автоматическое управление подразделяется на кулачковое; с помощью регулируемых упоров; программное и адаптивное.
Показатели технического уровня и надежности станков
Каждый станок имеет определенные выходные параметры. К ним относятся: производительность, точность, прочность, жесткость, виброустойчивость, стойкость к тепловым воздействиям, износостойкость, надежность, показатели качества, экономические и энергетические показатели. Все они, вместе взятые, характеризуют технический уровень станка.
Производительность. Это основной критерий количественной оценки станочного оборудования. Производительность станка характеризуется числом деталей, Технологическая производительность с уменьшением времени резания возрастает, чего нельзя сказать о фактической производительности. До некоторого момента значение Qф будет возрастать с увеличением технологической производительности. Но далее с ростом технологической производительности фактическая начнет падать. Это будет происходить, когда скорость резания станет выше рекомендуемой для обработки данного материала, так как станет увеличиваться значение tпр: быстрее будет затупляться режущий инструмент, чаще придется его заменять, а следовательно, переустанавливать и настраивать на размер. Технолог должен помнить об этом всегда и не форсировать режимы резания (т.е. параметры режима не должны превышать рекомендуемые значения), а для повышения производительности применять другие методы: многоинструментальную и многопозиционную обработку, совмещение процесса резания с загрузкой (выгрузкой) заготовок (обработанных деталей), как это имеет место на роторных автоматических линиях.
Прочность. Расчеты на прочность деталей, выполняемые при проектировании станков, осуществляют по величинам допускаемых напряжений, коэффициентам запаса прочности или вероятности безотказной работы. Расчеты по допускаемым напряжениям наиболее просты и удобны, их используют для станков массового производства, опыт эксплуатации которых значителен. Прочность деталей станков исключает аварийные ремонты из-за их поломки.
Точность. Для деталей машин понятие точности включает точность формы и размеров отдельных участков детали, а также точность взаимного положения этих участков.
Точность обработки характеризуется значениями допущенных при обработке погрешностей, т.е. отступлением размеров обработанной детали от заданных по чертежу. Погрешности обработки должны находиться в пределах допусков. Кроме того, необходимо при обработке заготовки получить заданную шероховатость поверхности,
которая непосредственно зависит от метода обработки и режимов резания.
Точность обработки на станке будет в первую очередь зависеть от точности и шероховатости поверхностей деталей узлов станка. Однако при проектировании и изготовлении машин нужно учитывать и другие факторы, влияющие на ее точность.
. Жесткость. Критерий жесткости в станках является одним из важнейших. Например, прецизионные станки проектируют значительно более массивными, чем другое технологическое оборудование для тех же нагрузок и мощности, так как их узлы будут более жесткими, а следовательно, под действием приложенных сил будут давать меньшие отжатия.
Жесткостью узла называется его способность сопротивляться появлению по осям координат упругих смещений под действием нагрузки. Жесткость, может быть определена как отношение силы, приложенной к узлу в заданном направлении, к упругому отжатию 5 этого узла.
Износостойкость. В результате постепенного изменения поверхностей трения при взаимодействии двух сопряженных деталей происходит их изнашивание, т.е. уменьшение размеров и изменение формы деталей. По статистике большинство деталей машин выходит из строя из-за износа. При изнашивании в миниатюре происходят пластические и упругие деформации, сдвиг, усталостные разрушения материала деталей.
Для большинства деталей наиболее характерен абразивный износ. Абразивные частицы, образующиеся при резании или царапании с отделением микростружки, попадая в смазочный материал или непосредственно на трущиеся поверхности, разрушают эти поверхности. Кроме того, при относительном перемещении двух поверхностей микровыступы испытывают переменные напряжения, вследствие чего в дальнейшем наступает усталостное разрушение. Появляются микротрещины, что также способствует отделению частиц материала. Для конкретных пар можно экспериментально определить значения к и в дальнейшем прогнозировать долговечность работы многих типовых деталей и узлов станков: направляющих скольжения, кулисных механизмов, дисков фрикционных муфт, ходовых винтов и гаек скольжения. Износ резко удорожает эксплуатацию машин в связи с необходимостью периодической проверки их технического состояния и ремонта, что связано с простоями и сокращением выпуска продукции.
Стойкость к тепловым воздействиям. Работа станка сопровождается тепловыделением, вызываемым процессом резания и трением в механизмах. В результате теплового воздействия возникают тепловые деформации, отрицательно влияющие на работоспособность станка. Так, понижается защитная способность масляного слоя в трущихся поверхностях и, следовательно, увеличивается их износ или происходит заедание; изменяются зазоры в подвижных соединениях; нарушается точность обработки, например в результате нагрева передней опоры шпинделя его ось может отклониться, что приведет к снижению точности.
Тепловые деформации узлов станка могут быть рассчитаны, если известны их температурные поля.
Виброустойчивость. Под виброустойчивостью понимают способность конструкций работать в заданном диапазоне режимов обработки без недопустимых колебаний отдельных узлов и станка в целом. В связи с увеличением скоростей резания и быстрых ходов колебания становятся все более опасными. Если частота собственных колебаний узлов станка совпадет с частотой вынужденных колебаний, наступает резонанс и станок может разрушиться.
Вибрации (колебания с малой амплитудой) также нежелательны. В металлорежущем станке вибрации, например, ухудшают качество обрабатываемой поверхности, уменьшают долговечность оборудования, ограничивают его технологические возможности.
Основное распространение в машинах имеют вынужденные, параметрические колебания и автоколебания.
Вынужденные колебания возникают под действием внешней периодически изменяющейся силы по следующим причинам:
-дисбаланс вращающихся деталей (ротора электродвигателя, шпинделя с расточным резцом, абразивного круга);
-ошибки в изготовлении зубчатых передач (вход в зацепление будет сопровождаться ударом);
-прерывистое резание при фрезеровании, долблении, затыловании, протягивании;
-внешние источники колебаний.
Параметрические колебания возникают при наличии какого-либо переменного параметра, например момента инерции поперечного сечения вала. Предположим, что на вращающийся вал действует постоянная сила. Если его поперечное сечение — окружность, у которой моменты инерции относительно всех осей одинаковые, то никаких колебаний не возникает. Если же у вала есть прямоугольное отверстие (в поперечном сечении — прямоугольник), то под действием постоянной силы вал будет прогибаться по-разному, так как моменты инерции у прямоугольника относительно взаимно перпендикулярных осей различны.
Автоколебания, или незатухающие самоподдерживающие колебания, характеризуются тем, что их источник находится в самой колебательной системе. При автоколебательном процессе в случае прекращения колебаний системы перестают существовать и переменные силы, поддерживающие эти колебания.
Примером могут служить автоколебания при трении (фрикционные колебания при медленном перемещении столов, суппортов станка по направляющим скольжения). Причиной этих колебаний является переменность силы трения в зависимости от скорости. Другим примером автоколебаний являются самовозбуждающиеся колебания в металлорежущих станках при резании. Повышение жесткости узлов машины способствует снижению автоколебаний.
Наличие колебаний в станках чаще всего сопровождается шумом. Шум связан с соударением движущихся деталей. Так, погрешности шага и профиля зубьев зубчатых колес приводят к соударению при входе в зацепление. Повышенный уровень шума сказывается на утомляемости персонала и, следовательно, вреден для здоровья. Уровень шума измеряется в децибелах (дБ), его предельное значение ограничивается санитарными нормами. Основные меры борьбы с шумом: повышение точности и снижение шероховатости при обработке, применение демпферов и материалов с повышенным внутренним трением.
Таблица фигур металлорежущих станков
Наименование станков | Шифр | Шифр типа | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
Резервные | 0 | — | |||||||||
Токарные | 1 | Автоматы и полуавтоматы: | Токарно- | Сверлильно- | Карусельные | Токарные и | Многорезцевые и | Специализи- | Разные | ||
специализи- рованные | одношпин- дельные | многошпин- дельные | |||||||||
Сверлильные и расточные | 2 | — | Вертикально- | Полуавтоматы | Координатно-расточные | Радиально- | Горизонтально- | Алмазно- | Горизонтально- | Разные | |
одношпин- дельные | многошпин- дельные | ||||||||||
Шлифовальные и доводочные | 3 | Круглошли- фовальные | Внутришли- фовальные | Обдирочно- шлифовальные | Специализи- рованные шлифовальные | — | Заточные | Плоско- шлифовальные | Притирочные, полировальные, хонинговальные, доводочные | Разные образивные | |
Электро- физические и электро- химические | 4 | — | Светолучевые | — | Электро- химические | Электро- искровые | — | Электро- эрозионные, ультрозвуковые прошивочные | Анодно- механические отрезные | — | |
Зубо- и резьбо-обрабатываю- щие | 5 | Резьбо- нарезные | Зубодолбежные для обработки цилиндри- ческих колес | Зуборезные для обработки конических колес | Зубофрезер- ные для обработки цилиндрических колес и шлицевых валов | Для нарезания червячных колес | Для обработки торцов зубьев колес | Резьбофре- зерные | Зубоотделоч- ные, провероч- ные и обкатные | Зубо- и резь- бошлифоваль- ные | Разные зубо- и резьбо- обрабатываю- шие |
Фрезерные | 6 | — | Вертикально- фрезерные консольные | Фрезерные не- прерывного действия | Продольные одностоеч- ные | Копироваль- ные и грави- ровальные | Вертикаль- ныебезконсольные | Продольные двухстоеч- ные | Консольно- фрезерные опе- рационные | Горизон- тально- фрезерные консольные | Разные фрезерные |
Строгальные, долбёжные, протяжные | 7 | Продольные | Поперечно- | Долбёжные | Протяжные горизонталь- | Протяжные вертикальные для протягивания | — | Разные строгальные | |||
одно- стоечные | двух- стоечные | внутренного | наружного | ||||||||
Разрезные | 8 | Отрезные, оснащенные | Правильно- | Пилы | — | — | |||||
токарным резцом | шлифоваль- ным кругом | гладким или насеченным диском | ленточные | дисковые | Ножовочные | ||||||
Разные | 9 | Муфто- и трубообра- батывающие | Пило-насекальные | Правильно- и безцентрово- обдирочные | Балансировочные | Для испыта- ния инструментов | Делитель- ные машины | Балансиро- вочные | — | — |