1 зачем нужны вальцовочные агрегаты и какими они бывают?
Такие станки применяются на любом современном предприятии для производства из листового металла конических, овальных и цилиндрических изделий. Процедура изготовления подобных конструкций называется вальцеванием. Она дает возможность получать любые трубы, заготовки для последующей штамповки, разнообразные готовые изделия из металла.
Простое вальцовочное оборудование также используется в быту, когда требуется своими руками сделать желоба, дымоходы, трубы, воздуховоды, прочие изделия для кровельных и строительных работ. Современные валковые машины позволяют работать практически с любыми металлами. Они без проблем сгибают листы из нержавеющей стали, легированных и углеродистых сплавов, алюминия, чугуна.
Имеются и модели вальцовочного оборудования, которые работают с поликарбонатными заготовками.
Все описываемые нами агрегаты для гибки листового металла делят на следующие группы:
- ручные;
- электромеханические;
- гидравлические.
Ручной станок может монтироваться на стойке (напольный) либо на верстаке (настольный). Он не имеет механического привода, поэтому для выполнения работ на нем требуется применять мускульную силу. Ручные станки очень просты в использовании. Их элементарная конструкция обеспечивает высокую надежность эксплуатации оборудования на протяжении длительного времени.
Ручные вальцы предназначены для получения труб и других изделий из листового металла толщиной до 1,5–2 миллиметров. Они легкие и компактные, что позволяет переносить их и применять непосредственно на объекте выполнения тех или иных работ (кровельных, ремонтных).
Станки с электрическим мотором, оснащенным редуктором, более эффективны в эксплуатации. Они облегчают и значительно ускоряют процесс гибки труб. Электромеханический агрегат устанавливается стационарно в соответствующем цехе предприятия и применяется для обработки металла толщиной до 4 миллиметров.
Гидравлическое оборудование относится к тяжелому классу. Оно используется для изготовления труб и иных конструкций в промышленных масштабах на энергомашиностроительных, судостроительных и машиностроительных комбинатах. По своему техническому потенциалу гидравлический станок превосходит электромеханический и ручной в несколько раз.
4 популярные марки ручных станков
Современный рынок оборудования для металлообработки способен удовлетворить любые запросы. Каждый может найти нужный ему станок за вполне приемлемую стоимость. Несложно приобрести и недорогую компактную установку для гибки труб своими руками, и профессиональный напольный агрегат для крупного производственного цеха либо скромной частной мастерской.
Популярностью пользуются вальцы следующих производителей:
- Stalex. Любители и специалисты приобретают далее указанные модели вальцовочных механизмов от этого известного производителя – W01-0,8х1000, W01-2х1250, W01-0,8х915, W01-0,8х610, W01-0,8х305. Выбрать нужный агрегат несложно, в его маркировке первая цифра означает толщину листового металла, с которой работает станок, а вторая – его ширину. Вальцовочное оборудование под брендом Stalex изготавливается из высокопрочных марок стали, которые характеризуются высоким уровнем антикоррозионной защиты. На таких станках вы без труда сделаете своими руками множество разнообразных изделий, начиная от труб и заканчивая более сложными деталями.
- METALMASTER. Известные модели – MSR 1215 и MSR 1315 – трехвалковые механизмы высокой надежности. Работать за таким станком очень просто и удобно, никаких спецнавыков не требуется. Чаще всего продукцию METALMASTER покупают владельцы небольших мастерских, в которых осуществляется изготовление трубы (в том числе и профильной) различного сечения. Валки вращаются от рычага, на агрегатах указанных моделей возможна обработка прутков за счет наличия канавок на роликах.
- Энкор Корвет. Российский бренд, под которым выпускается вальцовочный агрегат Корвет-512. Станки под этой торговой маркой характеризуются невысокой стоимостью за счет того, что их собирают в Китае, и отличными техническими характеристиками. Корвет-512 позволяет своими руками сгибать трубы из листов толщиной не более 1,5 миллиметров.
Также вы можете купить оборудование других производителей – SAHINLER, JET, SCHWARTMANNS, PRINZING. Станки различаются по своей цене, но все они хорошо справляются со своей основной задачей.
Вальцовые станки
При производстве муки процесс измельчения зерна и промежуточных продуктов является одним из главных, так как в значительной мере влияет на выход и качество готовой продукции. Измельчение зерна — одна из наиболее энергоемких операций. Технологические приемы и машины, применяемые для измельчения, в значительной степени определяют технико-экономические показатели мукомольного завода.
При выборе оборудования и общей характеристики процесса измельчения на вальцовых станках вводится нормативный показатель средней удельной нагрузки, который определяют отношением суточной производительности размольного отделения мукомольного завода к общей длине мелющей линии. Для вальцовых станков А1-БЗН эта нагрузка составляет 70…75 кг/(см·сут).
Расход электроэнергии не может быть определен аналитически, но установлены определенные практические нормативы удельного расхода электроэнергии на 1 т готовой продукции в целом по заводу.
На основные показатели эффективности вальцового станка влияют отношение окружных скоростей вальцов (дифференциал), состояние поверхности, точность зазора по длине вальцов. Увеличение окружных скоростей вальцов при постоянном дифференциале значительно повышает производительность, несколько увеличивает расход энергии и практически не влияет на гранулометрический состав измельченного продукта. Окружная скорость быстровращающихся рифленых вальцов составляет 5,5…6 м/с, а микрошероховатых — 5,2…5,4 м/с.
Существенное влияние на производительность и характер измельчения оказывает дифференциал. При увеличении дифференциала преобладает разрушение частиц за счет деформации сдвига, при уменьшении—возрастает роль деформации сжатия.
Большое влияние на качество и производительность вальцового станка оказывает не только величина зазора, но постоянство его размера по всей длине вальцов. Правильную цилиндрическую форму вальцов обеспечивают при шлифовке на специальных шлифовально-рифельных станках. На постоянство величины зазора может оказывать также влияние состояние подшипников, пружин-амортизаторов и шарнирных соединений.
На качество измельчения отрицательно влияет радиальное биение вальцов, которое может быть следствием неправильной геометрической формы отклонений при запрессовке полуосей, дефектов литья, вызывающих дебаланс. Чем меньше радиальное биение вальцов, тем стабильнее рабочий зазор, выше качество размола, больше износостойкость вальцов. Поэтому технология обработки вальцов обязательно включает их динамическую балансировку на специальном станке.
Важным условием выполнения всех последовательных технологических этапов измельчения зерна является обеспечение заданных параметров рифленой микрошероховатой поверхности вальцов, которые для каждой технологической системы рекомендованы Правилами и учтены в форме исполнения вальцовых станков. Рифли нарезают на шлифовально-рифельном станке, а микрошероховатую поверхность наносят струей сжатого воздуха и абразивного материала на станке со специальным пескоструйным устройством.
Вальцовый станок ЗМ2 двухсекционный (рис.) с автоматическим регулированием производительности предназначен для измельчения зерна и промежуточных продуктов размола на мукомольных заводах.
Рис. Вальцовый станок ЗМ2
Станок включает: станину 7; вальцы 3 и 28; распределительный 4 и дозирующий 5 валики; аспирационное устройство 2; рычаги 6, 11, 15, 23; винты 7,17, 24; планку 8; секторную заслонку 9; пружины 10, 22; питающую трубу 12; датчики 13 и 14; механизм грубого привала 19; механизм 25 настройки и выравнивания подвижного вальца; межвальцовую передачу 26; эксцентриковый вал 27и электродвигатель 29.
Мелющие вальцы — это две стальные полуоси и рабочий барабан, изготовленный из никель-хромистого чугуна, наружная поверхность которого отбелена. Вальцы 3 и 28 в станине 1 устанавливают на роликовых подшипниках так, чтобы между линией, соединяющей оси вальцов, и горизонталью был угол 45°. Один из каждой пары вальцов имеет только вращательное движение (быстровращающийся), второй (медленновращающийся) кроме вращательного может иметь и поступательное движение в направлении, перпендикулярном оси. Этим обеспечиваются регулирование зазора между вальцами, его равномерность по длине вальцов, быстрое сближение (привал) и удаление (отвал), а также прохождение между вальцами твердых посторонних предметов без поломок деталей станка и повреждения вальцов. Вальцы связаны между собой шестеренчатой передачей. Очищают вальцы щетками 30.
Настройку вальцов на параллельность проводят винтовыми механизмами. Для параллельного сближения вальцов служит эксцентриковый механизм. Твердые посторонние предметы проходят между вальцами благодаря кратковременному увеличению зазора при сжатии пружины амортизатора, установленного под рычагом подвижного вальца.
Питающий механизм станка двухваликовый. Распределительный валик 4 имеет разнонаправленные (левые и правые) винтовые рифли, а дозирующий 5 — 35 продольных рифлей на окружности на драных системах и 59 рифлей на размольных. Механизм регулирования питания позволяет автоматически изменять подачу продукта дозирующим валиком в зависимости от поступления его в питающую трубу.
Питающий механизм приводится в движение плоскоременной передачей от ступицы быстровращающегося вальца, а дозирующий — от распределительного посредством шестеренчатой передачи. Щель между секторной заслонкой и распределительным валиком регулируют вручную.
Вальцовые станки типа ЗМ2 выпускают с механическим автоматом, который обеспечивает выполнение следующих операций:
— отвал и привал подвижного вальца;
— выключение и включение вращения питающих валиков;
— закрытие и открытие секторной заслонки.
Отвал и привал вальцов сопровождаются световой сигнализацией. При отвале загораются красные сигнальные лампы. При холостом ходе станка сигнальные лампы включены, при рабочем режиме выключены.
Для регулирования подачи продукта над дозирующим валиком 5 на рычаге 6 шарнирно закреплена секторная заслонка 9, которая соединена тягой 18 и рычагами 11 и 15 с датчиком питания 13, находящимся в питающей трубе станка. Для возврата заслонки в нижнее (закрытое) положение служит пружина 10, усилие которой можно изменять перестановкой ее ушка в отверстиях опорной планки на клапане 16. Для регулирования величины перемещения (хода) секторной заслонки служит винт 17, закрепленный на клапане 16.
Правый кривошип рычага 6 соединен через серьгу 20, винт 24, амортизационную пружину 22, рычаг 23, вал 21 с рычагом автомата управления. Левый кривошип рычага 6 через планку 8 опирается на винт 7, закрепленный на станине, который ограничивает движение секторной заслонки при закрытии ее и исключает поломку деталей.
Предварительную установку величины питающей щели осуществляют вращением винта 24. Дополнительно питающую щель во время работы станка (при очистке питающего бункера) увеличивают путем оттяжки винта 24 за маховичок «на себя».
Включение грубого привала вальцов, вращение валиков 4 и 5, а также перемещение секторной заслонки 9 выполняются автоматически при наполнении продуктом питающей трубы. Обратные процессы протекают также автоматически при прекращении поступления продукта в питающую трубу станка.
Техническая характеристика станков типа ЗМ2
Производительность, т/сут………..60… 100
Частота вращения быстровращающихся вальцов, мин-1:
рифленых……………490
гладких……………390
Расход воздуха на аспирацию, м3/ч……..600
Мощность электродвигателя привода
вальцов одной половины, кВт……..15,0.. .22,0
Габаритные размеры, мм………………….1800x1470x1390
Масса, кг…………………………..2550…3350
Вальцовый станок А1-БЗН (рис.) применяют в составе комплектного оборудования на мукомольных заводах с увеличенным выходом муки высоких сортов и устанавливают группами по четыре и пять машин с общими капотами.
Вальцовый станок состоит из следующих основных узлов: мелющих вальцов; привода вальцов; механизмов настройки и параллельного сближения вальцов; системы привала—отвала вальцов; приемно-питающего устройства; станины.
Мелющие вальцы 8 установлены парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. С уменьшением этого угла улучшаются условия питания вальцовой пары и увеличивается коэффициент заполнения зоны измельчения.
Мелющие вальцы выполнены в виде бочки с запрессованными в нее с обеих сторон цапфами. Твердость поверхности бочек для рифленых и гладких вальцов соответственно составляет 490…530 и 450…490 НВ. Бочки и цапфы полые. Глубина верхнего отбеленного слоя бочек 10…20 мм. Номинальный размер бочек 250×1000 мм. Вальцы в станке располагают под углом 30° к горизонтали.
Радиальную и осевую нагрузки, действующие на рифленые вальцы при измельчении продукта, воспринимают подшипники. Подшипники 1 двух верхних вальцов (в каждой половине станка по одному) прикреплены к боковине болтами, причем два из них призонные. Нижний валец каждой половины станка может перемещаться относительно верхнего. Это дает возможность регулировать величину зазора между вальцами, а также обеспечить мгновенный отвал нижнего вальца при прекращении подачи продукта, что позволяет избежать опасной работы вальцов «рифлей по рифлям». Для этого корпуса подвижных подшипников б и 10 установлены на цапфах 9, запрессованных в отверстиях боковины. Корпуса подвижных подшипников имеют разъемные крышки. Один из корпусов этих подшипников сопрягается с цапфой через эксцентриковую втулку 7, вращением которой изменяют взаимное расположение мелющих вальцов и добиваются параллельности.
В корпусах установлены роликовые сферические подшипники 11, внутренние обоймы которых посажены на конические части цапф вальцов. Демонтируют подшипники с конической части цапфы специальным гидравлическим съемником. Он нагнетает масло через отверстие цапфы вальца в место сопряжения с конической поверхностью внутренней обоймы. На левых концах цапф закреплены шестерни 3 и 5 межвальцовой передачи, которые закрывают кожухом 4.
Рис. Мелющие вальцы с подшипниковыми узлами, приводом и межвальцовой передачей
Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив 13 верхнего быстровращающегося вальца. Для привода применяют узкие клиновые ремни УА-4500-6. Шестерни и шкив закреплены на цапфах шпонками 12. Диаметр ведущего шкива для рифленых вальцов 150 мм, для гладких 132 мм.
К кожуху межвальцовой передачи прикреплен корпус 2 (рис.) устройства охлаждения быстровращающегося вальца.
Рис. Устройство охлаждения вальца станка ЗМ2
Консольная трубка 1 введена в пустотелый валец и одним концом жестко прикреплена к корпусу. Внутри корпуса (в подводящей магистрали) смонтирован пробковый кран 3, с помощью которого регулируется подача воды во внутреннюю полость вальца. Отвод воды из вальца в корпус обеспечивает насадка 5, ввернутая в резьбовое отверстие цапфы.
При замене вальцов подачу воды перекрывают вентилем 4, закрепленным на подводящей вертикальной трубе.
Охлаждение вальца происходит следующим образом. Вода через кран, регулирующий подачу, попадает в изолированную камеру, откуда через радиальное отверстие поступает в трубку и из нее разбрызгивается в полость вальца. Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу тепла. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продукта после измельчения — 25°С.
Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание оболочек и перегрев продуктов размола. Уменьшение влагоотдачи стабилизирует влажность продуктов измельчения, соответственно снижается накапливание зарядов статического электричества. В охлажденных продуктах меньше вероятность конденсации влаги в самотечных трубах и на ситах рассевов. Снижение теплового расширения охлаждаемых вальцов обеспечивает стабильность рабочего зазора. Для улучшения теплообмена внутренняя поверхность вальца должна быть обработана так, чтобы не было глубоких раковин, заусениц и других неровностей.
Устройство подачи зерна выполнено: для I драной системы в виде дозирующего и промежуточного валиков, для остальных систем с рифлеными вальцами (кроме 12-й размольной) в виде сочетания дозирующего валика и шнека; для размольных систем в виде сочетания распределительного и дозирующего валиков. Привод устройства подачи зерна обеспечивает плоскоременная передача.
Изменения передаточного числа редуктора и, следовательно, частоты вращения дозирующего валика у станков драных систем (кроме первой) и 11-й, 12-й размольных систем достигают применением механизма с вытяжной шпонкой, управляемого рукояткой через реечную шестерню. Другие исполнения устройств подачи продукта не имеют шпонки в редукторах. Вращение от ведомого шкива плоскоременной передачи редукторам передается через кулачковую муфту, включение которой сблокировано с грубым привалом вальцов посредством рычагов и вилки.
Для автоматического регулирования подачи зерна (рис.) над дозирующим валиком 5 на шарнирах подвешена заслонка 1. Она соединена через рычаги, ролик, кронштейн и валик с датчиком 3 питания, выполненным в виде двух шторок.
Рис. Устройство автоматического регулирования подачи зерна
Для регулирования воздействия зерна и, следовательно, чувствительности сигнализатора предназначена пружина 6. Деформация последней изменяется перемещением гайки 7 относительно винта 8. Для станков драных систем (кроме I и IV мелкой) кромка заслонки зубчатая, для станков остальных систем — гладкая. Диапазон автоматического перемещения заслонки регулируют ограничительным винтом 2. В зоне поступления зерна (в горловине станка) установлен зонд 4.
Механизм настройки параллельности вальцов состоит из маховика 25, соединенного шпонкой с втулкой 26 (рис.).
Рис. Механизм настройки параллельности вальцов в вальцовом станке А1-БЗН
В ее резьбовое отверстие ввернут винт 27. Одним из торцов, имеющим прямоугольные направляющие, винт контактирует с роликом рычага 24, установленного на шипе эксцентрикового вала. К рычагу шарнирно закреплена подвеска 1.
На ней смонтированы предохранительные пружины 33, обеспечивающие безопасный проход между вальцами инородных тел диаметром до 5 мм. На верхний торец предохранительных пружин опирается свободный конец корпуса подвижных подшипников 31.
В состав устройства также входят: болты 9 и 10; ограничительный винт 11; рычаги 2, 3, 8, 13,14, 24; воздухораспределитель 15; ролик 16; кронштейн 17; винты 7,19, 27; гайка20, горловина22 станка; подшипники23, 32; боковина29 станины.
Механизм обеспечивает параллельное сближение вальцов после их настройки. Грубого привала вальцов достигают вращением эксцентрикового вала вручную (за рукоятку винта 7, соединенного с рычагами 2 и 3, образующими механизм параллельного сближения) или от штока пневмоцилиндра 34.
В первом случае защелка 6 на рычаге 2 зацепляется с упором 4 и обеспечивает приваленное положение вальцов. Во втором случае вращением эксцентрика 5 исключают зацепление защелки 6 с упором 4, а привал вальцов обеспечивают сжатым воздухом с номинальным давлением 5-10~5 Па. Рабочая полость пневмоцилиндра через электропневматический клапан 30 может соединяться с магистралью сжатого воздуха или атмосферой. Давление сжатого воздуха в цилиндре контролируют по манометру на пульте управления. Грубый отвал вальцов обеспечивают пружиной и массой нижнего вальца.
Сигнализатор уровня состоит из зонда, головки 21 и релейного блока 28. При наполнении зерном питающей трубы сигнализатор уровня позволяет обеспечить автоматическое включение грубого привала вальцов и вращение питающих устройств. Обратные процессы происходят также автоматически при прекращении поступления зерна в питающую трубу. Местное управление грубым привалом осуществляют двухходовым распределителем воздуха, рукоятка которого расположена на лицевой панели станка.
Сигнализацию холостого хода обеспечивает автоматическое загорание лампочки, находящейся на лицевой панели.
В процессе поступления зерна в питающую трубу изменяется электрическая емкость зонда 4. Емкость зонда преобразуется электрической схемой головки 21 в напряжение, которое управляет работой реле блока 28. Это обеспечивает срабатывание электропневматического клапана, приводной механизм которого соединяет магистраль сжатого воздуха с рабочей плоскостью пневмоцилиндра. Поршень перемещает шток вверх, а от него (через винт 7 и рычаги 2, 3) поворачивается эксцентриковый вал. Шипы последнего перемещают вверх рычаг 24, подвеску 1, предохранительную пружину 33 и свободные концы подвижных подшипников 32. Происходит привал вальцов. Одновременно рычаг 8 освобождает рычаг 14 и вилку 12.
Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через редукторы начинает передаваться следующим образом: в станках I драной системы — через промежуточный валик дозирующему; в станках с рифлеными вальцами остальных систем — шнеку и дозирующему валику; в станках с гладкими вальцами — дозирующему и распределительному валикам для подачи зерна на измельчение.
Под действием массы зерна, преодолевая сопротивление пружины 18, датчик 3 питания перемещает валик, рычаги, ролик. В результате через гайку и винт проворачивается заслонка 1 и в зазор между ней и дозирующим валиком поступает зерно. При уменьшении массы зерна, поступающего в питающую трубу, уменьшается давление на датчик. В результате под действием пружины 18 и собственной массы заслонка 1 опускается к дозирующему валику 5, уменьшая подачу зерна.
Если измельчение по концам вальцов неодинаковое, то вращением маховика 25 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами. При прекращении поступления зерна в питающую трубу емкость зонда изменяется. При этом головка зонда и релейный блок размыкают цепь электропневматического клапана. В результате прекращается подача сжатого воздуха в пневмоцилиндр и под действием пружины через эксцентриковый вал соответствующие рычаги и винт происходит отвал вальцов.
На различных системах вальцы отличаются друг от друга по параметрам нарезки рифлей. Это обеспечивает высокую технологическую эффективность.
Кроме того, исполнение вальцовых станков отличается устройством подачи зерна, учитывающим его особенности, мощностью электродвигателей, типом очистителей. Наиболее нагружен электродвигатель вальцового станка на I драной системе. Его мощность 18,5 кВт. На последующих системах мощность электродвигателей уменьшается в соответствии с уменьшением количества измельчаемого продукта. К отличительным особенностям следует отнести разницу в конструкции капотов и диаметр приводных шкивов.
В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных; 12-й размольной, установлены щетки 30 из полимерного материала. Микрошероховатые вальцы и вальцы 12-й размольной системы очищаются ножами. Для улучшения условий запуска приводного электродвигателя необходимо, чтобы ножи соприкасались с поверхностью вальцов только после привала. Это достигается блокировкой перемещения ножей с поворотом эксцентрикового вала посредством тросов. Зазор между вальцами и ножами не должен превышать 0,02 мм.
Величину зазоров между приваленными вальцами проверяют на расстоянии 50…70 мм от их торцов (величина зазора должна составлять для I драной системы, мм: 0,8… 1,0; для II драной — 0,6…0,8; для III драной крупной — 0,4…0,6; для драной мелкой — 0,2…0,4; для рифленых вальцов размольных систем — 0,1…0,2; для гладких вальцов — 0,05). Зазоры между заслонкой и дозирующим валиком должны быть на драных системах не более 0,35 мм, на размольных — не более 0,15 мм. Зазоры между вальцами и ножами не должны превышать 0,02 мм.
Форма исполнения вальцовых станков включает следующие переменные параметры:
сочетание половин станка для определенной технологической системы;
характер рабочей поверхности мелющих вальцов (параметры рифления или микрошероховатости);
отношение окружных скоростей мелющих вальцов — дифференциал (2,5 или 1,25);
способ очистки мелющих вальцов (нож, щетки);
варианты устройства механизма подачи исходного продукта (тип валкового питателя, наличие редуктора, кромка заслонки, диаметры шкивов плоскоременной передачи);
мощность электродвигателя каждой половины станка; диаметры приводных шкивов (150 и 132 мм); вариант установки электродвигателя (на перекрытие или под ним); способ капотирования вальцовых станков (групповой, индивидуальный). Настройка и регулирование станка заключаются в следующем. До пуска вальцового станка проверяют: наличие смазки, работу привально-отвального механизма, отсутствие заклинивания вальцов (при вращении их вручную); крепление резьбовых и других соединений; правильность установки и равномерность рабочего зазора между приваленными неподвижными вальцами на расстоянии 50…70 мм от их торцов; перемещение очистителей вальцов при привале—отвале; состояние приводных ремней.
При работе вальцового станка под нагрузкой проверяют: работу привала привально-отвального механизма от пневмопереключателя, от системы местного и дистанционного управления, в автоматическом режиме; блокировку включения питающих валков и перемещения заслонки; нагрев подшипников (температура не более 60 °С); работу электросхемы и аппаратуры, подачу воды, работу подводящих и отводящих коммуникаций и транспортных устройств.
Настройка и оперативное регулирование режима размола каждой половины станка под нагрузкой сводится в основном к регулированию системы питания и рабочего зазора между мелющими вальцами.
У станков, имеющих в механизме питания редуктор, устанавливают вначале минимальную скорость дозирующего валка и далее подбирают оптимальную скорость вращения. Не допускается переключение скоростей на ходу.
В соответствии с распределением нагрузок по технологическим системам с помощью регулятора вручную устанавливают минимальную величину питающего зазора между заслонкой и дозирующим валком: на драных системах — 0,35 мм, на размольных — 0,15 мм. Максимальный питающий зазор, устанавливаемый ограничительным винтом, должен обеспечивать верхний предел подачи исходного продукта, при котором токовая нагрузка электродвигателя по показаниям амперметра не превышала бы 80 % номинальной. Если это условие не соблюдается, питающий зазор должен быть уменьшен.
Регулирование системы питания и рабочего зазора следует проводить с постоянным контролем нагрузки электродвигателя, а также подводящих и отводящих транспортных систем.
На станках размольных систем визуально проверяют равномерность распределения продукта по длине распределительного валка. На каждой половине вальцового станка проверяют извлечение, которое должно соответствовать действующим Правилам.
При настройке режима размола проверяют чувствительность автоматической системы регулирования подачи исходного зерна в установленном диапазоне, расположение конуса продукта в приемной трубе относительно чувствительного элемента сигнализатора уровня.
После настройки режима размола должны быть затянуты контровочные устройства органов регулирования. В дальнейшем для данной помольной партии не следует корректировать режим помола, который должен обеспечивать стабильные результаты в течение длительного времени.
Отличительные особенности вальцовых станков типа А1-БЗН от ранее выпускаемых отечественных моделей состоят в следующем:
вальцы изготовляют пустотелыми, что снижает металлоемкость станков; улучшены условия питания;
наличие водяного охлаждения быстровращающихся вальцов создает стабильный тепловой режим в зоне измельчения, что благоприятно сказывается на количественно-качественных показателях процесса измельчения, одновременно охлаждаются подшипники;
совокупность конструктивных особенностей, высокой точности обработки, применение износостойкого рабочего слоя вальцов существенно повышает их долговечность: рифленых — до трех лет, гладких — до десяти лет;
автоматическая система привала—отвала нижнего вальца сблокирована с системой управления подачей исходного продукта, что позволяет дистанционно управлять станком, обеспечивая стабильность и надежность его работы;
применение конической посадки подшипников позволяет производить демонтаж их гидравлическим съемником. Наличие горизонтального разъема в корпусе подшипников дает возможность снимать их вместе с подшипниками. Значительно снижается трудоемкость этой операции;
в формах исполнения вальцовых станков с большим количеством переменных параметров максимально учтена специфика каждой технологической системы;
наличие трех моделей вальцовых станков: А1-БЗН, А1-БЗ-2Н и А1-БЗ-ЗН — повышает их ууниверсальность и область использования.
Техническая характеристика станков типа А1-БЗН
Производительность, т/сут……….84
Расход воды на охлаждение половины станка, м3/ч, не более……………0,3
Частота вращения быстровращающихся вальцов, мин-1:
рифленых……………………..420…460
гладких………….. 395…415
Давление сжатого воздуха, МПа……..0,5
Расход воздуха на аспирацию для вальцового станка А1-БЗ-2Н, м3/мин, не более………10
Расход воздуха на пневмотранспорт для половины вальцового станка А1 -БЗ-ЗН, м3/мин, не более…….0,3
Мощность электродвигателей, кВт, для систем:
I драной…………..18,5
II драной, 1 -й и 2-й размольных…….15
III драной, 1-й и 2-й шлифовочных, 3,4,6,8,9,10-й размольных…………..11
IV драной,5…12-йразмольных…….7,5
Габаритные размеры, мм, не более…………1800х 1700х 1400
Масса, кг (без электропривода, капотов и электроаппаратуры) ………..2700
Изгиб трубы вальцеванием
Вальцовка труб является одним из способов холодной гибки. Один из самых распространенных типов профилегибочных станков, работающих по данному принципу — это классический трехроликовый вальцевый трубогиб, который способен управляться с профилями из любого материала:
- жесть;
- сталь, в том числе и коррозионностойкая (нержавеющая);
- цветные металлы;
- сплавы;
- полимеры.
Основным действующим механизмом вальцовочного станка такого типа служит конструктивный узел из трех вращающихся роликов (валков). Из них ведущим может быть один средний, либо два крайних ролика. Цилиндрическая или профильная заготовка, заправленная в станок для вальцовки труб, последовательно прокатывается между валками и изгибается для получения необходимого радиуса кривизны (рис.1).
В ходе прокатки заготовки на таком станке можно согнуть небольшой отрезок трубы, а можно изготовить и длинный гнутый профиль, протяженностью 5 и более метров, что востребовано, например, в строительной отрасли. Путем перемещения через валки заготовка изгибается под определенным углом по всей заданной длине. Еще одним важным достоинством такого станка является возможность гнуть трубу на полный круг, то есть на угол 360 градусов.
- Сначала создается предварительный натяг для придания необходимого радиуса изгиба. Это реализуется созданием усилия центральным двигающимся роликом на трубу, упирающуюся в два других ролика, либо посредством прикладывания усилия к двум боковым двигающимся роликам на трубу, упирающуюся в неподвижный центральный ролик.
- Собственно изгиб трубы происходит благодаря силе трения, возникающей между крутящими роликами станка и обрабатываемой трубой. Изделие, захватываемое усилием трения по ходу вращения крутящих роликов, гнется на величину предварительно установленного радиуса натяга трубы.
Если необходимый радиус изгиба не удается сформировать за один ход, то действия обеих стадий производятся повторно — до получения необходимой кривизны изгиба. Чем больше толщина стенки, тем большую кривизну изгиба можно реализовать. Для таких станков наименьший радиус гиба в единицах, кратных диаметру трубы, составляет:
- для очень толстой стенки — 6;
- для толстой стенки — 10;
- для тонкой стенки — более 10.
От числа ведущих роликов, а также силы трения между ними и поверхностью стенки, зависит формирование усилия, возникающего в процессе изгиба трубы вальцеванием. Вальцовочный агрегат работает с высокой производительностью; он способен обрабатывать трубы квадратного, прямоугольного, овального и даже треугольного профиля.
По этому признаку такую технологическую операцию можно отнести к одному из видов гибки металла. Поэтому отдельные специалисты заменяют словосочетание «вальцевание труб» термином «вальцевая гибка». Вальцы для профильной трубы при использовании данного типа профилегибов отличаются только формой (калибром) роликов или валков (рис.2).
Как правильно выбрать вальцы? | ооо «интервесп-м»
Валковые гибочные машины (вальцы), являются одним из самых востребованных типов оборудования для обработки листового металла. Пожалуй, ни одно современное предприятие, производящее резервуары для хранения и транспортировки, трубы, металлоконструкции, строительную технику и прочие изделия цилиндрической или конусной формы, не обходится без валковых листогибов.
Существует множество различных валковых гибочных станков, предназначенных под различные технологические задачи производства. Например, ручные и электромеханические вальцы предназначены для обработки тонколистовой стали и применяются в основном, при производстве воздуховодов, водостоков, желобов, элементов декоративных конструкций и прочих изделий из тонкой стали, где не требуется большого усилия при гибке. Такие вальцы, как правило, имеют 2-3 рабочих вала небольшого диаметра и рабочей длиной от 500 до 2050 мм.
В нашей статье, мы хотим подробно остановиться на более тяжелом промышленном оборудовании – гидравлических валковых машинах. Ведь именно данный тип вальцев, является самым сложным в техническом плане и вызывает массу вопросов у наших заказчиков при выборе.
Современные гидравлические валковые машины, для гибки листа в обечайку бывают двух видов – трехвалковые и четырехвалковые. Именно они позволяют производить качественную гибку достаточно толстого металлического листа (от 1 до 85 мм) в обечайку с подгибом. Трехвалковые машины позволяют производить гибку листа в цилиндрическую обечайку и конус, в то время как четырехвалковые машины, кроме цилиндрической обечайки и конуса позволяют производить изделия условно «квадратной» и эллиптической формы без переустановки листа.
Одним из основных рабочих приемов, который оказывает влияние на качество конечного изделия, изготавливаемого на вальцах, является подгибка. Подгибка представляет собой операцию предварительной гибки обоих концов листа, что в итоге позволяет получать ровную замкнутую обечайку. Благодаря своей конструкции, на четырехвалковых машинах можно производить подгибку за одну установку листа, поочередно прокатывая сначала один край листа, затем второй. Чтобы выполнить подгибку на трехвалковой машине, оператору необходимо извлекать лист из станка и прокатывать каждую сторону листа отдельно. Поэтому, для экономии времени рабочего процесса, мы рекомендуем нашим клиентам обращать на это внимание особое внимание. Ведь потеря времени для современного производства, это непозволительная роскошь.
Также при выборе вальцев, следует обратить внимание на кинематическую схему перемещения валов. Валковые машины могут иметь один или несколько приводных валов, один или несколько прижимных валов, а также параллельную или орбитальную схему перемещения боковых валов. Данная информация особенно ценна оператору станка, именно она определяет процесс и последовательность работы на станке.
Итак, мы вкратце рассмотрели конструктивные особенности валковых гибочных машин. Но как понять, какой станок подходит под Ваши задачи? Для этого необходимо знать параметры заготовки – в данном случае металлического листа и параметры конечного изделия, такие как:
Это основные параметры, без которых невозможно определиться с конкретным типом и моделью валковой гибочной машины.<
Давайте произведем расчеты параметров гибки листа в обечайку на примере четырехвалковой гибочной машины турецкого производителя SAHINLER модели 4R HSS 25-350.
Данный станок предназначен для гибки обечаек из листа средней и большой толщин с 3-мя приводными валами. Верхний и боковые валы имеют гидравлический привод и линейную схему перемещения боковых прижимных валов. Валы изготовлены из углеродистой стали и закалены до твердости HRC 58-60. Система смазки – централизованная. Гидравлическая система балансировки. Гидравлическая группа производства Bosch Rexroth и Duplomatic. Электрическая группа производства компаний Siemens и Telemecanique. Редуктор производства Brevini. Станок оснащен системой безопасности. Станок изготовлен в соответствии с нормами CE и имеет сертификат качества ISO 9000.
Технические характеристики валковой машины 4R HSS 25-350
Принцип гибки и примеры изделий, которые можно получить на станке.
Расчет гибочных способностей станка рассчитывается по таким формулам:
Минимальный диаметр обечайки = диаметр верхнего вала х 1.5 (где 1.5< – постоянный коэффициент).
Плоскость обечайки (мертвая зона) = толщина листа х 1.5
*для расчета минимального диаметра обечайки с толщиной листа, превышающей максимально допустимую (по паспорту станка), применяется следующая формула:
Минимальный диаметр обечайки = диаметр верхнего вала х 5 (где 5 – постоянный коэффициент).
Итак, из характеристик станка мы имеем:
Подставляем значения в формулу и получаем:
Минимальный диаметр обечайки = 350 х 1.5 = 525 мм
Плоскость обечайки = 16 х 1.5 = 24 мм – с каждой стороны.
График расчета зависимости толщины материала от ширины, при минимальном диаметре готового изделия 525 мм (сталь 24 кг/мм²)
Из графика следует, что максимальная толщина материала на длине гиба 2500 мм, при изготовлении детали с минимальным диаметром525 мм, равна:
Расчет минимального диаметра обечайки с толщиной листа, превышающей максимально допустимую (16 мм – с подгибом, 20 мм – без подгиба).
Минимальный диаметр обечайки = 350 х 5 = 1750 мм
Плоскость обечайки = 20 х 5 = 100 мм – с каждой стороны.
Из графика следует, что максимальная толщина материала на длине гиба 2500 мм, при изготовлении детали с минимальным диаметром 1750 мм, равна:
Также, ниже представлен пример таблицы зависимости ширины материала (длины гибки), диаметра получаемой обечайки и толщины материала для стали с пределом текучести 36 кгс/мм².
В данной статье, мы помогли Вам разобраться с основными техническими параметрами и расчетами гибочных способностей вальцев. Это базовые знания, на которые следует опираться при выборе станка данного типа. Но, помимо этих данных, следует уделить особое внимание опциям, которыми могут оснащаться валковые машины. Опциональное оборудование позволяет существенно упростить процесс работы на станке, повысить качество изделия и увеличить производительность оборудования.
Станки данного типа, могу дополнительно оснащаться:
Для подбора гидравлических валковых листогибов, Вы можете обращаться к высококлассным специалистам нашей компании, которые проведут консультации, расскажут о возможностях оборудования и предложат необходимое решение для задач Вашего производства.