Принцип действия и основные типы лазерных станков с ЧПУ

Возможности лазерных установок для резки материалов

Станок с лазером может выполнять две основных задачи: порезка материала и его гравировка. При порезке мы получает абсолютно точные детали, которые не требуют дальнейшей обработки, края ровные без сплавов, шероховатостей и других изъянов.

Гравировка — процесс, при котором на поверхности с помощью небольших несквозных резов появляется аккуратный, точный любой сложности рисунок или надпись. Лазерный станок позволяет сделать это быстрее, чище, качественнее всего.

Теперь вы знаете, о том, как работает этот аппарат, какие работы можно выполнять с его помощью. За покупкой станка или комплектующих деталей к нему можно обратиться в интернет-магазин «Lazer Technology». Хороших и качественных вам покупок.

Возможности оборудования

Лазерный луч, который является основным рабочим инструментом данного оборудования, имеет высокую мощность (до 10 000 000 Вт/кв. см, толщина зоны воздействия 0,1 мм). Такие характеристики позволяют обрабатывать материалы различной толщины.

Также с помощью лазерной технологии можно получить детали сложной конструкции и различных размеров.

Рассмотрим конкретнее возможности лазерных ЧПУ машин:

Лазерно-гравировальные станки

Преимущества технологии лазерной обработки перед обработкой резанием привели к появлению лазерно-гравировальных станков. По принципу действия эти машины очень схожи с фрезерными станками с ЧПУ. Лазерный станок также имеет монолитный корпус, горизонтальный рабочий стол, размещённый над ним подвижный инструментальный портал с головкой лазерного излучателя (аналога шпинделя с фрезой).

Движение портала (и соответственно, головки излучателя) обеспечивается шаговыми электродвигателями под воздействием управляющих импульсов, генерируемых системой ЧПУ (в соответствие с заложенной в память станка программой обработки). Процессор ЧПУ также управляет мощностью лазерного луча и обеспечивает функционирование прочих узлов станка.

Оптическая система станка состоит из лазерной трубки, отражающих зеркал и головки излучателя с фокусирующей линзой. Трубка имеет сложную «многослойную» конструкцию и заключает в себе активную среду (для современных станков — газовую смесь СО2, азота и гелия).

При подаче внешнего напряжения (через повышающий трансформатор) в газовой среде инициируется лазерный луч. Система зеркал и фокусирующая линза головки излучателя направляет луч на поверхность материала. Движение головки излучателя над заготовкой позволяет вести обработку согласно заданному алгоритму по самым сложным (двух- или трёхмерным) траекториям.

Про другие станки:  Продукция |

Материалы для обработки

С помощью лазерных аппаратов с числовым программным управлением можно обрабатывать такие материалы: акрил, полиэстер, двухслойный пластик, фанеру, шпон, дерево, картон и бумагу, кожу, камень, стекло, зеркало и др.

А с помощью бесконтактной технологии также возможна обработка достаточно тонких материалов (бумаги, кожи и прочего) – это материалы, работу с которыми еще недавно было довольно сложно автоматизировать.

Преимущества станков

  1. Огромное количество материалов, которые можно обрабатывать: тонкие и толстые, горючие и нет.
  2. Высокое качество и точность обработки.
  3. Минимум пыли и стружки.
  4. Высокая скорость обработки, за небольшой промежуток времени возможно сделать большое количество необходимой продукции.
  5. Минимальные потери материала, которые возможны за счет высокой точности обработки.

Принцип работы

На сегодняшний день цены на лазерное оборудование приемлемые, а поэтому оно набирает популярность и используется не только в крупном, но и в мелком бизнесе. Даже самые бюджетные модели станков с ЧПУ отличаются хорошей продуктивностью и качеством работы.

Давайте рассмотрим конструкцию станка:

  • цельная станина;
  • горизонтальный рабочий стол;
  • передвижной портал, который оснащен головкой, излучаемой лазерный луч.

Двигается исполнительный инструмент с помощью шагового электромотора, который управляется программой и устройством с числовым программным управлением. Это же ЧПУ отвечает за управление лазером и другими исполнительными механизмами.

Элементы оптического узла лазерного аппарата: лазерная трубка, головка излучатель, зеркала-отражатели, механизм фокусировки, линза фокусировки.

Принцип работы станков по лазерной резке металлов | цех металлообработки на заказ, завод по обработке металла,токарные, фрезерные работы, резка металла. мадис.

Суббота, 5 Сентябрь, 2022

Принцип работы станков по лазерной резке металлов. Мадис. Металлообработка на заказ по чертежам заказчика.При обработке металла часто требуется его резка. Для обработки металла было придумано большое количество различных методов его резки. Наиболее современным и технологичным методом резки металла является лазерная резка.

Принцип действия лазера

В состав лазера, генерирующего световое излучение, входит рабочее тело, генератор накачки, резонатор и другие вспомогательные элементы. Лазеры бывают следующих видов:

  • твердотельный лазер;
  • газовый;
  • волоконный.

В твердотельном лазере в качестве генерирующего тела используется твердотельный элемент, например, рубин. Лампа накачки вырабатывает световое излучение, которое поглощается рубином, атомы которого возбуждаются и выделяют большое количество световой энергии.

Про другие станки:  M-B TC 322 IT, M-B TC322IT, TC 322 IT, TC322IT, шиномонтажный станок, шиномонтажный стенд

В газовом лазере рабочим телом является газ. Этот газ проходит через газоразрядную лампу, в которой происходит электрический разряд, возбуждающий атомы газа. Наиболее эффективными являются газовые лазеры на углекислом газе.

Волоконный лазер состоит из генератора накачки на светодиоде, световода, в котором происходит генерация, и резонатора.

Преимущества лазерной резки

На станках лазерной резки можно обрабатывать металлы с различными физико-механическими свойствами. К ним относятся:

  • сталь;
  • нержавеющая сталь;
  • алюминиевые сплавы;
  • латунь;
  • медь;
  • сплавы из титана.

При этом для различных типов металла необходимо использовать лазеры различной мощности и разный режим резания. Лучше всего обрабатываются материалы с малой теплопрводностью. Такие материалы как латунь и медь имеют большую теплопроводность, поэтому для их резки требуется повышенная мощность лазера. Наиболее трудной является резка листов из сплавов таких материалов как титан. Этот металл имеет хорошую теплопроводность и отражательную способнось, а кроме того, он очень прочный и быстро окисляется. Для его резки требуется мощный лазер и продувка места резки инертными газами для защиты от окисления.

Использование станков для лазерной резки металлов имеет следующие преимущества:

  • возможность обработки металлов с различными свойствами;
  • высокая скорость резания металла;
  • возможность обработки сложных контуров;
  • минимальное механическое воздействие на металл;
  • использоание компьютеризированного управления.

Конструкция станка

В состав современного станка для лазерной резки металла входят:

  • лазерный источник;
  • станина;
  • приводы и передачи;
  • система охлаждения;
  • система подачи газа и дымоудаления;
  • система автоматического управления;
  • программное обеспечение.

Чаще всего в станках для резки металлов используются волоконные и газовые лазеры. В волоконном лазере формирование луча происхоит в волоконном резонаторе, а затем энергия луча по волоконному тракту передается к режущей головке. В газовом лазере луч формируется в резонаторе с газами, а затем с помощью системы зеркал энергия луча передается в головку. Режущая головка включает набор линз. Луч этой головки автоматически фокусируется.

В зависимости от типа станка мощность таких лазерных источников может достигать 4-6 кВт. При этом кпд лазеров не превышает 10-15 %.

Про другие станки:  Шлифовальные станки. (Тема 7) презентация, доклад

Станина представляет собой цельносварную конструкцию, которая должна быть жесткой, надежной и долговечной.

Приводы станка должны обеспечивать быстрое и точное передвижение координатой системы станка. Эти приводы мощные и не имеют люфта. Для примера, в станках компании Mitsubishi точность положения режущей головки по каждой из осей должна быть порядка ±0,01 мм. Максимальная скорость резания в таких станках достигает 50 м/мин.

В процессе резки металла требуется охлаждение лазерного источника. Это охлаждение бывает воздушным или водяным.

Для удаления продуктов резания рабочая область резания снабжается продувкой технологичекими газами. В качестве такого газа может быть использован сжатый воздух. А для удаления возникающего при резании металла дыма имеется специальная система.

Для управления такими мощными и скоростными станками необходима современная система управления. Система управления станком для резки металла лазером представляет собой компьютиризованную систему типа ЧПУ. В ее состав входит процессор, память, монитор, программное обеспечение. Управление режущей головкой осуществляется по 3 осям, при этом для управления по оси Z (регулировка высоты) используется обратная связь. Для определения положения лазерного луча используются специальные датчики.

Программное обеспечение станка обычно реализуется на основе стандартной операционной системы, например, Windows. В комплект программного обеспечения, как правило, входит большое число программ. Дополнительные программы могут вводиться с локальной сети предприятия или с помощью разъема USB.

Выводы:

  1. Наиболее эффективным способом резки металлов является лазерная резка.
  2. Лазерная резка обладает рядом преимуществ, основными из которых является точность, высокая скорость резания и возможность автоматизации процесса.
  3. Современные станки для лазерной резки представляют собой сложные комплексы, позволяющие быстро и точно производить сложную резку различных металлов.
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 4,00 из 5)
Загрузка...

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Войти